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ABSTRACT

In (:ah:ulating the position vector of th(, Moon in on-board flight software,

one often begins by using a series expansion to calculate the e(:lipti(: latitude

and longitude of the Moon, referred :o tile mean ectipti(: and equinox of (late.

One then performs a reduction for pre(:ession, followed t)y a rotation of the

position vector from the e(:liptic plane to the equator, and a transformation

from spheri(:al to Cartesian coordinates before finally arriving at the (h_sired

result: equatorial J20(}(} Cartesian components of the hmar position vector. An

alternative method is (tev(qoped hor(_ in whi(:h the (_quatorial J2000 Cartesian

(:olnpolients of t,he lunar position vector are calculated (tirc(:tly t)v a s(_ries ('x-

pansion, saving valual)le on-board computer rosour(:es.

INTRODUCTION

The calculation of the orbit of the Moon is one of the oldest problenis in

celestial m(_(:hani(:s. Its solution has had _rcat historical sigtfifi(:ance a_s a test

of N(:wton's theory of gravity, with much of the early work on the prot>lem

having b(,en don(, t)y Newton himself in his discussion of the two- and three-

t)ody protflcms in Book I of tim Pr'incipia. In past centuries, a(:(:lirat(_ pr(,(li(:tious

of thu position of the *Ioon have also b(,on of _reat practical interest a.s a

navigational aid for seafaring vessels, pronipting th(_ English governln(uit and

scientific so(:icties to offer rewards for accurate hmar prediction tables. 1 The

resulting t)ody of work (lov(_lop(_(1 during the (_ight(_onth and ninet('enth (:(uituries

forms the basis of the hmar theory still in use today.

Modern lunar theory was first developed by G.W. Hill -_-5 in 1878, art(1 later

expan(te(t an(l improved by E.\V. I3rown 6 in 1896. The prot)lem of hmar motion

addressed t)y Hill and Brown is a surprisingly ([im(:ult one; while t_h(, im(l(,rl.ving

physi(:al laws are very simple, the motion itself is quit(_ (:omplex. 7-11 The t)a.si(:

motion of th(, Moon around Earth is at[(,(:tcd I)y many strong p(uturbatious such

_s thos(_ dim to thu Sun, the other plan('ts, aim Earth's oquatot'ial bul_c. Th(!s('

p(_rt_irbations result in an advan(:ement of th(, line of apsid(,s of tll_, hmar orbit,

a regressioit of t.h(_ lin(_ o[ no(h's, an(t oth(!r p(,rio(li(: p(_rturl)ations sup(u'iniposcd

on th(_s(_ motions. For high a_:(:ura('y, it is necessary to (:olnput(, hlin(h'(,(ls of

periodic variations in th(> motion, aithol@l (:(nnpltting only r_h(, most important,

f(_w t(_rtns r('sltlts in a l('v(q of ac('llracy that is a(l('quatu for flight softwaru use.

Th('I'(_ have l>(,un two niajor r(_a.sous for [:ah:ulatiit_ t.h(' posii.ion of i:h(, .Moon

in spa_:(,(:raft Oi1-[10;4I'(1 (:OlIiput(!r flight software. First. on(' oftl,n wish(,s to write



flightsoftwareto preventthespacecraftfrompointhlgsensitiveinstrumentsat
the Moon,whichcanhaveanapparentmaignitudca.sbright eus -12 at full

Moon. le Second, one may require the flight software to calculate stellar alwrra-

tion corrections, ta For high accuracy, this requires calculating; the velocity vector

of Earth with respect to the Earth-Moon l)aryct,nter, which in turlt requires a

calculation of the lunar velocity vector. If the flight software can calculate a

lunar position vector, then this v(,locity v('(:tor may be found [)v differentiating

the lunar position vcutor with respect to time.

REVIEW OF CURRENT MODELS

A number of approaches for (:aI(:ulating a lunar position vector arc (:urr(mtly

used by spacecraft flight software. In the flight software for the' Hub}fie Space

Telescope's DF-224 flight computer, for example, one finds the position of the

Moon using a simple two-I)odv mo(lc'l. The standard two-body (:al(:ulations 14

are modified somewhat to allow for the motion of the nodes and apsides of the

hmar orbit. A new set of orbital eh'ments ix uplinkcd from the ground (wet'y

Dw days to keep the error in the model to within a(:ceptabl(', limits, on the order

of 1°. While this model is not highly accurate, it has the virtue of being very

fast -a necessity for the 197()s-vintage flight Colnputcr.

An approach commonly used with more modern flight computers is bas(,d on

the low-precision formulae given in the A.str'onomical Almanac. 15'16 This inodel

is base(} on earlier work done })y the Almanac Otfi(:cs of the United States and

United Kingdoln lr and by Eck(!rt, Vv'Mkcr, and Eckc'rt, Is all of which are })a,_cd

on Brown's hmar theory. 6 In this model, one begins by using series expansions

to calculate the c(:lipti(: longitude A, e(:lipti(: Iat.itud(_ _t, and horizontal parallax

rr of the Moon, r(ff(_rIcd to the ittCalt e(:lipti(: aim equinox of dart,:

218732 + 481 207?883 t

+6?29 sin(477 198785 t + 13479)

- 1?27 sin(-413 335?38 t + 259?2)

+0?66 sin(890 534.°'23 t + 235?7)

+0721 sin(954 397?70 t + 269?9)

-0719 sin(35 999?05 t + 357?5)

-0?11 sin(9(J(i 404?(}5 t + 1867{i) , (1)

j_ +5713 sin(,183 202?03 t + 93?3)

+0?28 sin(960 400?87 t + 228?2)

-0?28 sin({i 003718 t 4- 31873)

-0717sin(-4(}733272() t + 2177(i) , (2)



= O?9508

+1)70518 cos(477 198.°85 f + 13479)

+0?0095 ¢:os(-413 335?38 t + 259_'

+()°.0078 cos(890 534?23 t + 235.°7)

+0?0028 cus(95,1397.070 t + 269.09) (3)

The horizontal parallax _ gjv(,s the Earth-Xloon ([istan(:(, J":

Re
r = sin ,'r (4)

where Re = 6378.140 km is the equatorial radius of Earth (IAU 1976 value). 19
Having found tile hmar (,('lipti(: mean-of-date coordinates, one must then

perform a reduction for precession to epoch J2000 (2000 Jamlary 0t 12:00:00

Baryccntric DynamicM Time) to lind the ecliptic J2000 coordinat(,s (A0, /t0).

To s'u/ficien_ precisiou, this may he fonnd usiug tile t'ormula,_ 2°

,& = ;_ - l,<,l(X + ,.), (5)

.ko = .k - ,z+ t,,:os(._ + c) tan/_0, (6)

where the precession constants a, b, and c are given by

a = 17396971 t + 07l}l){)3086 t 2 , (7)

h = 07(}13(756 t - 070000092 t 2 , (8)

c = 57123 62- 17155 358 t- 0.0000 1964 t 2 , (9)

and where t is the time in Julian (:(ulturics (('y) of 36 525 days from J2000:

t = (JDE - 215 1545.0)/36 525 , (10)

and JDE is th(; ('ph('meris Julian day.

The remaining step is to rotate the coordinates from tile plan(' of the' mean

ecliptic of a2000 to tit(', mean equator of O2000, and to convert from spherical
polar to Cartesian coordinates:

X = rcosi_0cosA0 , (11)

Y = r((:os/t0 sin Ao cos ::o - sin ,I"]0sin C.o) , (12)

Z = r'(<:osi#0sinAosin-0 _- sin/_o(:osz0) . (13)

wh(,r(, r' is given bv Eq. (4) and c0 = 23 ° 26' 215148 is tit(' obliquity of th( +

c(:Iipti(: at J2(10() (IAU 1976 value). 21

This mo(hq has very giood pre<:i.sion for on-board fli_iht softwar(, use: tit(, rms

error in tim lunar position is al_out I)?l l. with a maximum ('rror of about. 0?35.



A NEW MODEL

Many of the equations [nw_tved in computin/ the position of the Moon us-

ing the method .jl>t described involve what is essentially a coordinate transfor-

mation, from ecliptic mean-of-date coordinates to eq_mtorial ,J2000 Cartesian

coordinates. In this paper, I investigate the possibility of calculatin_ t ll_, equa-

torial J2000 Cartesian coordinates directly by series expansions similar to Eqs.

(1 3), thus eliminating the need for performint_ the coordinate trans[orlnat[ons

in on-board flight software.

We begin by assuming that ea('.h of the J2000 equatorial Cartesian coordi-

nates X,_ may be represented bv Fom'ier sine series:

N_L

X, = E anmsin(_'nm t +_ .... ) ,

ro._l

(14)

where X1 - X, X2 - Y, and X3 _ Z; N,_ is the order of the series for X,.

We now need to find the amplitudes a,_m, frequen(:ies w',_,,, and phase constants

¢Snm. This may be done by fitting these parameters to the DE200 ephemeris

model 22'23 using an exhaustive, search. DE200 is an ephemeris model developed

at tilt'. Jet Propulsion Laboratory, and has been used to produce tables in tile

Astronomical Almanac since 1984. It calculates Cartesian coordinates of Solar

System obje(:ts, referred directly to the mean equator and equinox of J2000.

For each coordinate, the terms of the series in Eq. (14) may be found one

at a time by sinmltaneously fitting the parameters a_m, w,;m, and ¢Snm over a

grid of possible, values to the. DE200 inodel. An algorithm for accomplishing

this involves calculating tilt: error e=._ between the DE200 model and a "test

model" asin(_.'t + 5) using each combination of parameters a, w, and 8:

for a = amin to ama:r

for co = _,.e,)min. to O2ma.r,

for _5 = _min to rSma.r,

2100_a = E_=2000[X_E200(t) - _ si.(._,t. + £]2

where the smmnation is over 2 I6 points covering the interval A.D 2000 2100.

The smallest error eaw6 found gives the best fit parameters a, w, and _5. This

process may be repeated several times o_x'r successively smaller search ranges

and finer grid spacings ill order to find more significant digits for the parameters.

Once a term has been finmd, it is subtra_:ted frolll the DE200 data. and the whole

process repeated on the remaining data to find the next terHt in the series.

In the model given by Eq. (14), we assume that the amplitudes a,,m are all

positive, so that amplitudes may be scatdied over a Rri(1 of values between () and

the tnaxitt|mu ill the data set. The amplitudes may he, asSltlned l.o })e po.sitive

without loss of generality [)y allowinf4 the phase constants rS, m to bc sear,hod

over the entire range 0 to 2rr: since -sin[} -- sin(/) + ,7), any potential milllts

sign ill the amplitltde is simply absorbed as an extra ,-c radians added to the

phase coD.St;tilt.
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Det('rmill[Ilg a search ra.Itge for the frertlttm(:it's _'r_rn. Is SOlnt_Wlh_t [nor(' COIll-

pli(:atcd than it is for tile atnplitndcs and pha.se constants. A search rang_(' for

aJnm may be d(_termincd by examining the peaks in the Fourier transform Xn (w')

of the DE200 data:

_,,(_) = x,,(t)_'_',tt, (15)

wh(_r(, X.(t) is the position coordimtt(, at tim(: t, and _' is the anglllar ft'cqucncy.

This Fouri(,r tralmforin may })e calculatc'd by using tht' DE200 mod(q to comp:ltc.

tit(' hmar position v(,ctor at N discr(_te tJmc point.s fk. th('n fin(ling th(' discrete

Fourier transfornt ._. (c_,p):

N- 1

._,,(_'7,) = _ X,,(t_.) e '_,_ . (1¢i)
k=0



where X,_(&) is the position v('(:torat time point, t_, ,zl, --= 2xp/t.v is the angular

frequency, and p = 0, 1, 2,..., N - 1. For this stlt(ly, N = 214 time points were

chosen over the time, interval A.D. 2000 2100; the InaKnit, ud(' of the resulting

Fourier transform ]_Yl(",',,)l for X is shown in Fi_ur(.' 1. For each ternL in the

series expansion (Eq. 14), a scaI'ch ran_e is _-aken at(rand one of the peaks ill

the Fourier spect,['ll[ii.

This exhaustive search process, which is essentially a curve fit to t.hc DE200

model, required about one w('ek of COXltplll-('r tittle to tilld each term ill a series,

and some, five months of CoIHpII_O.I' tillle to _iIl([ {h(_ compl(_te solution to soVOil

terms per series. The final results are:

X 383.0 sin (8899.685 t + 5.381)

+ 31.5 sin (70.990 t + 6.169)

+ 10.6 sin (16728.377 t + 1.453)

+ 6.2 sin (1185.622 t + 0.481)

+ 3.2 sin (7143.070 t + 5.017)

+ 2.3 sin (15613.745 t + 0.857)

+ 0.8 sin (8467.263 t + 1.010) x 106 m, (t7)

Y 351.0 sill (8399.687 t + 3.81t)

+ 28.9 sin (70.997 t + 4.596)

+ 13.7 sin (8433.466 t + 4.766)

+ 9.7 sin (16728.380 t -+- 6.165)

+ 5.7 sin (1185.667 t + 5.164)

+ 2.9 sin (7143.058 t + 0.300)

+ 2.1 sin (15613.755 t ÷ 5.565) × 10 a m, (18)

Z z 153.2 sin (8399.672 t + 3.807)

+ 31.5 sin (8433.464 t + 1.629)

+ 12.5 sin (70.996 t + 4.595)

+ 4.2 sin (16728.364 t + 6.162)

+ 2.5 sill (1185.645 t + 5.167)

+ 3.0 sin (104.881 t + 2.555)

÷ 1.8 sill (8399.116 t + 6.248) × 106 m . (19)

where all angles are given in radiar_..s for _:onvenience of _tse in software, t is the

time ill Julian (:entreits fi'oni a2000 given 1)v Eq. (10), and X. Y. and Z arc

the Cartesian (:omponents of the lunar position ve(:tor, r('f('i'rcd to tilt' ntcan

equator and equinox of J2()00. "['it(' terms are arranged in or(lcr of (t('(:rcasing

contribution to the redm:tion ill l;lll' (_I'r'of of the model.



Oneoft,heprimaryadvamag;esofthismodelixthat. it. allows a I_mar ephemeris

to ))e progranm,ed in flight, softwar(_ _Ising v¢'rv lit);h' (:ode. Usin_ Eqs. (17 19),

an entire lunar ephemeris model may be programmed in just. a few lines of C

(:Ode:

for (n=0; n<3; n*+)

{

x[n] = 0.0;

for (m=0; m<7; m++)

x[n] += a[n] [m] *sin(w [n] [m] *t+delta [n] [m]);

}

Calculations for the reduction for precession, rotation from the ecliptic to the

equator, and transformation from spherical polar to Cartesian coordinates have

essentially been "absorbed" into the series eoetficients, and so do not need to

be, performed explicitly.

DISCUSSION OF THE NEW MODEL

An examination of the frequencies in the terms of the A._t,'ono'mical Almanac

model of Eqs. (1 3) and of the new model of Eqs. (17 19) gives some interesting

insights into the hmar motion. The frequencies in the Astronomical Almanac

model are all computed as functions of the mean anomalies and mean longitudes

of the Sun and Moon, 16 while the frequencies in the model/iven by Eqs. (17 19)

are determined entirely by a curve fit. We examine the origins of some of the

more prominent fl'equeneies in both models below.

Anomalistic Month

The dominant term in t,he expressions for the eclipti(: lonaitud(, A (Eq. 1)

and horizontal parallax ,'T (Eq. 3) have a frequem:y of 477 198.85 (leg (:y-1.

In deriving the Astronomical Almanac series, this frequency was computed ms

the rate of (:hange of the Moon's mean anomaly. Sin(:e the mean anomaly is

measured in the plane of the orbit fiom the perigee point., one (:omplete cy(:h'

Of the HIC&tt anolnaly requires the same :4IIIOItIlt, of tiizle mS the ._,[oott's motion

from its perigee point to its next perigee. It comes a.s no surprise, then, that

this frequency of 477 198.85 deg cy -1 ix equal to one revolution per arl, omali._tic

rrl,onth of 27.554 550 days, where an anomalistic mOilth is the time required for

the Moon to Iilove frolll perigee to perigee.

Draconic NIonth

For the ecliptic lat.itude ,,'¢(Eq. 2), the dominant, term has a freq,wncy of

,'183 202.03 deg, (:v -I. This was computed a.s t.he rate (,f (:hang(' of the Moon's

mean lott_itu(h', which is in(m.'<ned from t,he v('rnal equinox to th(' as(:cl).ding

node along t,he e('lip(.i(: plane, thei_ from the nod(' to the Moon alon/ the orbit

plan('. The X[o(m will have / = 0 only wh('n it. is at. ore' ()f the no(t('s of the

orbit, and it. will next; have .,"¢= 0 again ((:fossil,.< the nod(' in th(' same direct.ion)



whenit r(,t.ltrnsto (-hesamenodea_ain.VVemightthcrc'fi_re(_xpcctthat the
dominantt(wmin theexpressio:tforrimeclipticlatitudrwillbethetimerequirc,d
for theMOOllto movefromanorbitalnodeba(:kto dwSalll('llo(tc.Imh'('d,the
fl'equen(:yof483202.03(legcy-t isequaltoonerevolutionperd,'aconic month

of 27.212221 days, whet(' a dra(:oni(: month is the time requiwd for the Moon

to move from an orbital nod(' back to the same nod('.

Sidereal Month

In the series for X, Y, and Z in the new model (Eqs. 17 19), on the other

hand, the dominant terms all have a frt_qucD.(:y of about 8399.685 rad CV -1,

which is equal to 1 revolution per sidereal month of 27.321662 (lays, where a

sidereal month is mea,_ured with respect to the fixed stars. This is a reflection of

the model having; its coordinate system fixed in space (mean of J2000 equatorial

coordinates).

Motion of the Apsides

A comparison of t}tc rnodcl of Eqs. (1 3) with tile new model of Eqs. (17

19) shows that the new model includes an important term that does not appear

in the conventional model, having a flcqucn(:y of about 70.99 rad (:y-1. This

frequency r¢>flect, s the motion of the line of apsides of the hmar orbit. The

expected frequency of this motion may })c computed from the periods of the

anomalistic and sidereal months:

2_ 27r

,_iderc'al too. anomalisti(: too.

27.321662 d 27.554 550 d x 36,52,5 (:.v

= 7(I.9932 tad cy -1 (2o)

in close agreement with the fl'equ(m(:ies fomld using the cm-v(' fib.

ERROR ANALYSIS

The. results shown in Eqs. (17 19) have been (:he(:ke(l agiainst the DE200

ephemeris mo(lel 1)y using DE200 to generate hm_tr X, Y, and Z coordinates at

220 (over one million) time points l)etwe(m AD. 2000 January 1 and A.D. 2100

January 1, ('orrespon(tin_ to roughly oil(; point every fifty minutes for H)0 years.

The mo(h'l shown in Eqs. (iT 19) was run at the same time points, and the

results compar('(l with the DE2(}0 results. This error analy.sis shows an rms

position error I)('twe(m DE200 and th(' new model of Eqs. (17 19) of 07341, and

a rnaxirtmru error of 1°.():_3.



CONCLUSIONS

Three lunar (_phemcris models for on-board flight software use hay(' b('('n

discussed. A modified two-body model is very f_t. but is of low precision

and requires constant maintenance in the form of p(,riodi(: ,q),latcs of orbital

el('ments from the ground. Thc model ('nrrcntly in common use. which is based

on the Iow-prc(:ision formulae in the A.stranomicalAlmanac, is of very good

pre(:ision and will run in(l(_finitcly without _round intcrv(mtion, but requires code
to (:onvcrt the cal(:ulatcd ecliptic mcan-of-(late (:oordinates to equatorial 32000

Cartesian (:oordinates. The method developed in this paper is of intermediate

precision, requires the least code of the three, and will also run indefinitely

without gromld intcrv(mtion. It may have applications for small missions whcre

computer resour(:cs are limited and its precision is a(:ceptable.
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